

Cathkin High School Physics Department CfE Higher

## Unit 3 Electricity



## Learning Outcomes

| Name  |      |      |
|-------|------|------|
| INUME | <br> | •••• |

Class.....

I am confident that I understand this and I can apply this to problems
 I have some understanding but I need to revise this some more
 I don't know this or I need help because I don't understand it

| Covered How well<br>you do th |   |                                                 |                                                                       |
|-------------------------------|---|-------------------------------------------------|-----------------------------------------------------------------------|
| (*)                           | × | ?                                               | ✓                                                                     |
|                               | × | ?                                               | ✓                                                                     |
|                               | × | ?                                               | ✓                                                                     |
|                               | × | ?                                               | ✓                                                                     |
|                               | × | ?                                               | ✓                                                                     |
|                               | × | ?                                               | ✓                                                                     |
|                               | × | ?                                               | ✓                                                                     |
|                               |   | you<br>(*) *<br>*<br>*<br>*<br>*<br>*<br>*<br>* | you do ti<br>(*) * ?<br>* ?<br>* ?<br>* ?<br>* ?<br>* ?<br>* ?<br>* ? |

| Section 1 Electrons and Energy                                                                                                                       | lectrons and Energy Covered |   | Section 1 Electrons and Energy Covered How you |          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---|------------------------------------------------|----------|--|--|
| Current, voltage, power and resistance                                                                                                               | (*)                         | x | ?                                              | ✓        |  |  |
| <ol> <li>State that voltage is defined as the energy transformed per<br/>unit of charge.</li> </ol>                                                  |                             | × | ?                                              | <b>√</b> |  |  |
| 8. State the relationship V = $E_w/Q$ .                                                                                                              |                             | * | ?                                              | ✓        |  |  |
| 9. Carry out calculations involving the relationship between energy, voltage and charge.                                                             |                             | * | ?                                              | ✓        |  |  |
| 10. State that the energy transformed from an external source to the circuit is known as the electromotive force (e.m.f.).                           |                             | × | ?                                              | ✓        |  |  |
| 11. Give examples of sources of e.m.f.                                                                                                               |                             | × | ?                                              | ✓        |  |  |
| 12. State that the energy transformed into another form of energy by a circuit component is known as the potential difference (p.d.).                |                             | × | ?                                              | ✓        |  |  |
| 13. Carry out calculations involving the relationships between power, current, voltage and resistance in series and parallel circuits.               |                             | * | ?                                              | ✓        |  |  |
| 14. State that a potential divider circuit consists of a number of resistors, or other components, connected across a supply.                        |                             | × | ?                                              | ~        |  |  |
| 15. Carry out calculations involving potential differences and resistances in potential dividers using the potential divider equation and Ohm's law. |                             | * | ?                                              | ✓        |  |  |
|                                                                                                                                                      |                             |   |                                                |          |  |  |

| Section 1 Electrons and Energy                                                                                        | Covered | How we<br>you do t |   |          |
|-----------------------------------------------------------------------------------------------------------------------|---------|--------------------|---|----------|
| Electrical sources and internal resistance                                                                            | (~)     | x                  | ? | ✓        |
| 16. State that a power supply is equivalent to a source of e.m.f. with a resistor in series, the internal resistance. |         | ×                  | ? | ✓        |
| 17. Describe the principles of a method for measuring the e.m.f.<br>and internal resistance of a source               |         | ×                  | ? | <b>√</b> |
| 18. Explain why the e.m.f. of a source is equal to the open circuit p.d. across the terminals of a source.            |         | ×                  | ? | <b>√</b> |
| 19. State that the closed circuit p.d. across the terminals of a source is equal to the t.p.d.                        |         | ×                  | ? | ✓        |
| 20. State that the e.m.f. of a cell is equal to the sum of the t.p.d.<br>and the lost volts.                          |         | ×                  | ? | ✓        |
| 21. Carry out calculations involving the relationship between the e.m.f., t.p.d. and lost volts.                      |         | ×                  | ? | ✓        |
| 22. Describe two methods of measuring e.m.f. and internal resistance by graphical methods.                            |         | ×                  | ? | ✓        |
| 23. State the R = r for maximum transfer of energy between a source and a load.                                       |         | ×                  | ? | <b>√</b> |
|                                                                                                                       |         |                    |   |          |

| Section 1 Electrons and Energy                                                                                                               | Covered |   | How well ca<br>you do this |   |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------|---|----------------------------|---|
| Capacitors                                                                                                                                   | (✓)     | × | ?                          | ✓ |
| 24. State that the capacitance of a capacitor is a measure of its ability to store charge.                                                   |         | × | ?                          | ✓ |
| 25. State that a simple capacitor consists of two parallel conducting plates separated by an air gap.                                        |         | × | ?                          | ✓ |
| 26. Describe the circuit symbol for a capacitor.                                                                                             |         | × | ?                          | ✓ |
| 27. State that the charge Q stored on a capacitor is directly proportional to the p.d. V across it.                                          |         | × | ?                          | ✓ |
| 28. Describe the principles of a method to show that the p.d.<br>across a capacitor is directly proportional to the charge on<br>the plates. |         | × | ?                          | ✓ |
| 29. State that capacitance is defined as the gradient of the charge against p.d. graph or the ratio of charge to p.d.                        |         | × | ?                          | ✓ |
| 30. State that the unit of capacitance is the farad and that one farad is one coulomb per volt.                                              |         | × | ?                          | ✓ |
| 31. Carry out calculations involving the relationship between charge, capacitance and p.d.                                                   |         | × | ?                          | ✓ |
| 32. Explain why work must be done to charge a capacitor.                                                                                     |         | × | ?                          | ✓ |
|                                                                                                                                              |         |   |                            |   |

| Section 1 Electrons and Energy                                                                                                                                                               | Covered |   | v well<br>ı do tl |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|-------------------|---|
| Capacitors (continued)                                                                                                                                                                       | (~)     | × | ?                 | ✓ |
| 33. State that the work done to charge a capacitor is given by the area under the graph of charge against p.d.                                                                               |         | × | ?                 | ✓ |
| <ul> <li>34. State that the energy stored in a capacitor is given by<br/>½ (charge × p.d.) and equivalent expressions.</li> </ul>                                                            |         | × | ?                 | ✓ |
| 35. Carry out calculations using the relationship between energy, charge and p.d. or alternative expressions.                                                                                |         | × | ?                 | ✓ |
| 36. Draw qualitative graphs of current against time and of voltage against time for the charge and discharge of a capacitor in a d.c. circuit containing a resistor and capacitor in series. |         | × | ?                 | ✓ |
| 37. Carry out calculations involving voltage and current in CR circuits.                                                                                                                     |         | × | ?                 | ✓ |

| Section 2 Electrons at work                                                                                                                    | Covered |   | How well o<br>you do thi |   |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|--------------------------|---|
| Conductors, semiconductors and insulators                                                                                                      | (*)     | x | ?                        | √ |
| 1. State that solids can be classified into three types according to their electrical properties as conductors, semiconductors and insulators. |         | × | ?                        | ✓ |
| 2. Give examples of conductors, semiconductors and insulators.                                                                                 |         | × | ?                        | ✓ |
| 3. State that the different electrical properties of conductors, semiconductors and insulators can be explained by Band Theory.                |         | × | ?                        | ✓ |
| 4. State that in isolated atoms, the permitted energy levels consist of a series of sharply defined states.                                    |         | × | ?                        | ✓ |
| 5. State that in solids, the permitted energy levels associated with each state of the isolated atom forms a continuous band.                  |         | × | ?                        | ✓ |
| <ol> <li>State that the two highest bands are known as the valence<br/>band and the conduction band, respectively.</li> </ol>                  |         | × | ?                        | ✓ |
| 7. State that the valence band contains electrons that can be considered to be bound to the atom.                                              |         | × | ?                        | ✓ |
| 8. State that the valence band is full in insulators and semiconductors.                                                                       |         | × | ?                        | ✓ |
| 9. State that the conduction band contains electrons that are free to move.                                                                    |         | × | ?                        | ✓ |
| 10. State that the conduction band is empty in insulators and semiconductors, but partially filled in conductors.                              |         | × | ?                        | ✓ |
|                                                                                                                                                |         |   |                          |   |

| Section 2 Electrons at work                                                                                                                       | Covered |   | v well<br>ı do tl |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|-------------------|---|
| Conductors, semiconductors and insulators (continued)                                                                                             | (*)     | × | ?                 | ✓ |
| 11. State that only partially filled bands may permit conduction.                                                                                 |         | × | ?                 | ✓ |
| 12. State that there is an energy gap between the valence<br>and conduction bands in insulators and<br>semiconductors.                            |         | × | ?                 | ✓ |
| 13. State that an electron can absorb energy to move between the valence band and the conduction band.                                            |         | × | ?                 | ✓ |
| 14. State that in insulators, the energy gap is normally<br>too large for electrons to jump to the conduction<br>band.                            |         | × | ?                 | ✓ |
| 15. State that in semiconductors, the energy gap is much smaller and electrons can jump to the conduction band as a result of thermal excitation. |         | × | ?                 | • |

| Section 2 Electrons at work                                                                                                                                                                       | Covered | - | v well<br>ı do ti |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|-------------------|----------|
| Intrinsic and extrinsic semiconductors                                                                                                                                                            | (*)     | × | ?                 | √        |
| 16. State that in semiconductors, conduction occurs by means of negative charge carriers, (electrons) or positive charge carriers (holes).                                                        |         | × | ?                 | <b>√</b> |
| 17. State that in pure semiconductors there are very few electrons available to conduct which makes the resistance very large.                                                                    |         | × | ?                 | ✓        |
| <ol> <li>State that in pure semiconductors more free electrons<br/>become available at higher temperatures, therefore<br/>the conductivity increases and the resistance<br/>decreases.</li> </ol> |         | × | ?                 | ✓        |
| 19. State that these pure semiconductors are known as <b>intrinsic</b> semiconductors.                                                                                                            |         | × | ?                 | ✓        |
| 20. State that the addition of impurity atoms to a pure<br>semiconductor (a process called doping) increases its<br>conductivity by adding either extra electrons or holes<br>to the lattice.     |         | × | ?                 | ✓        |
| 21. State that doped semiconductors now have a majority charge carrier present and are known as <b>extrinsic</b> semiconductors.                                                                  |         | × | ?                 | ✓        |
| 22. State that group V doping agents result in n-type extrinsic semiconductors, which contain extra electrons.                                                                                    |         | × | ?                 | ✓        |
| 23. State that group III doping agents result in p-type extrinsic semiconductors, which contain extra holes.                                                                                      |         | × | ?                 | ✓        |
|                                                                                                                                                                                                   |         |   |                   |          |

| 24. Explain how doping can form an n-type semiconductor in which the majority of the charge carriers are negative, or a p-type semiconductor in which the majority of the charge carriers are positive. | × | ? | ~ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|                                                                                                                                                                                                         |   |   |   |

| Section 2 Electrons at work                                                                                                                                                                                          | Covered |   | v well<br>ı do tl |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|-------------------|----------|
| p – n junctions                                                                                                                                                                                                      | (*)     | × | ?                 | ✓        |
| 25. State that the interface between p-type and n-type material is called the p-n junction and it functions as a diode.                                                                                              |         | × | ?                 | ✓        |
| <ol> <li>State that the majority charge carriers diffuse towards the junction and electrons and holes combine to form ions.</li> </ol>                                                                               |         | × | ?                 | ✓        |
| <ul> <li>27. State that this results in a depletion zone across the p-n junction where the density of charge carriers is low, with positive ions on the n-type side and negative ions on the p-type side.</li> </ul> |         | × | ?                 | ✓        |
| 28. State that when the p-type material is connected to the positive terminal of a supply and the n-type to the negative terminal, then the junction is <b>forward biased</b> .                                      |         | × | ?                 | ✓        |
| 29. State that if the potential difference across the junction is sufficient to force electrons to cross the depletion zone, then the junction will conduct.                                                         |         | × | ?                 | ✓        |
| 30. State that when the terminals are reversed, the junction is <b>reverse biased</b> and cannot conduct.                                                                                                            |         | × | ?                 | <b>√</b> |
|                                                                                                                                                                                                                      |         |   |                   |          |

| Section 2 Electrons at work                                                                                                                                                                            | Covered |   | v well<br>ı do tl |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|-------------------|-----------------------|
| p – n junctions (continued)                                                                                                                                                                            | (√)     | × | ?                 | √                     |
| 31. Describe the movement of the charge carriers in a forward/ reverse-biased p-n junction diode.                                                                                                      |         | × | ?                 | <ul> <li>✓</li> </ul> |
| 32. State that in a light emitting diode a large forward bias is<br>applied to the p-n junction enabling positive and negative<br>charge carriers to recombine, thereby producing photons<br>of light. |         | × | ?                 | ✓                     |
| 33. State that the frequency of the emitted photons increases<br>as the size of the energy gap between the conduction and<br>valence bands increases.                                                  |         | × | ?                 | ✓                     |
| 34. State the relationship $E = h f$ .                                                                                                                                                                 |         | × | ?                 | ✓                     |
| 35. Carry out calculations involving the relationships between E, h, f and λ.                                                                                                                          |         | × | ?                 | <b>√</b>              |
| 36. State that in photovoltaic cells, absorbed photons can create electron-hole pairs to produce a potential difference.                                                                               |         | × | ?                 | <b>√</b>              |
|                                                                                                                                                                                                        |         |   |                   |                       |